Cloud Run, fully-managed Autopilot mode, container orchestration with Google Kubernetes Engine (GKE), and low-level virtual machines (VMs) in Google Compute Engine are just a few of the fantastic ways that Google Cloud can run your workloads. Up until recently, you had to buy multiple Committed-use Discounts (CUDs) to cover each of these many products in order to maximise your investment. For instance, you may have bought an Autopilot CUD for workloads operating in Google GKE Autopilot, a Cloud Run CUD for Cloud Run always-on instances, and a Compute Engine Flexible CUD for VM expenditure including workloads running in GKE standard mode.
What is GKE Autopilot?
GKE In Google GKE Autopilot, Google controls your cluster configuration, including nodes, scaling, security, and other predefined parameters. Autopilot clusters use your Kubernetes manifests to provision compute resources and are optimised to run most production applications. The simplified configuration adheres to scalability, security, and cluster and workload setup best practices and recommendations from GKE. See the comparison table between Autopilot and Standard for a list of pre-installed settings.
Autopilot GKE pricing
When using Google GKE Autopilot, you often only pay for the CPU, memory, and storage that your workloads require. Since GKE oversees the nodes, you are not charged for any capacity that is not utilised on your nodes.
System Pods, operating system expenses, and unforeseen workloads are all free of charge. See Autopilot pricing for comprehensive pricing details.
Advantages
- Concentrate on your apps: Google takes care of the infrastructure, allowing you to concentrate on developing and implementing your apps.
- Security: By default, clusters are configured with a hardened configuration that activates numerous security parameters. GKE complies with whatever maintenance plans you set up by automatically applying security fixes to your nodes when they become available.
- Pricing: Billing estimates and attribution are made easier with the Autopilot pricing model.
- Node management: Since Google oversees worker nodes, you can set up automatic upgrades and repairs and don’t need to build new nodes to handle your workload.
- Scaling: GKE automatically assigns additional nodes for those Pods and automatically increases the resources in your existing nodes based on demand when your workloads encounter high load and you add more Pods to handle the traffic, such as with Kubernetes Horizontal Pod Autoscaling.
- Scheduling: Autopilot takes care of the pod bin-packing process, saving you the trouble of keeping track of how many Pods are active on each node. Pod spread topology and affinity are two further Kubernetes technologies that you may use to further regulate Pod placement.
- Resource management: Autopilot automatically sets pre-configured default settings and adjusts your resource requirements at the workload level if you deploy workloads without configuring resource values, such as CPU and memory.
- Networking: Autopilot automatically activates some networking security measures. For example, it makes sure that all network traffic from Pods travels via your Virtual Private Cloud firewall rules, regardless of whether the traffic is intended for other Pods in the cluster or not.
- Release management: Your control plane and nodes will always operate on the most recent certified versions of the software because every Autopilot cluster is registered in a GKE release channel.
- Managed flexibility: Autopilot provides pre-configured compute classes designed for workloads with specified hardware or resource requirements, like high CPU or memory. Instead of having to manually establish new nodes that are supported by specialised machine types and hardware, you can request the compute class in your deployment. Additionally, GPUs can be chosen to speed up workloads such as batch or AI/ML applications.
- Decreased operational complexity: By eliminating the need for constant node monitoring, scaling, and scheduling, autopilot lowers platform management overhead.
- A SLA covering both the control plane and the compute capability utilised by your Pods is included with Autopilot.
Arrange your Autopilot clusters
Plan and build your Google Cloud architecture prior to forming a cluster. You specify the hardware you want in Autopilot based on your workload requirements. To run certain workloads, the required infrastructure is provisioned and managed by GKE. For instance, you would ask for hardware accelerators if you were running machine learning workloads. You ask for Arm CPUs if you are an Android app developer.
Depending on the size of your workloads, plan and request quota for your Google Cloud project or organisation. Only when your project has sufficient quota for that hardware will GKE provide infrastructure for your workloads.
When making plans, keep the following things in mind:
- Cluster size and scale estimations
- Type of workload
- Cluster organisation and application
- Network topology and setup
- Configuring security
- Cluster upkeep and administration
- Deploying and managing workloads
- Record-keeping and observation
Increasing Calculus Flexible CUDs
Google is happy to report that the Compute Engine Flexible CUD, which is now called the Compute Flexible CUD, has been extended to include the premiums for Autopilot Performance and Accelerator compute classes, Cloud Run on-demand resources, and the majority of Google GKE Autopilot Pods. The specifics of what is included are contained in the manuals and our SKU list.
You can cover eligible spend on all three products Compute Engine, GKE, and Cloud Run with a single CUD purchase. For three-year agreements, you can save 46%, and for one-year commitments, 28%. You may now make a single commitment and use it for all of these items with one single, unified CUD, maximising its flexibility. Moreover, you can apply these commitments on resources across all of these goods in any region because they are not region-specific.
Eliminating the CUD Autopilot
Google is eliminating the Google GKE Autopilot CUD because the new extended Compute Flexible CUD offers a larger savings and more overall flexibility. The old Google GKE Autopilot CUD is still for sale until October 15; after that date, it will be discontinued. It makes no difference when you purchase an existing CUD; they will still be applicable for the duration of their term. Having said that, Google advise you to investigate the recently enhanced Compute Flexible CUD for your requirements both now and in the future due to its improved discounts and increased flexibility!