What Is AMD Vivado?
A collection of design tools for AMD adaptive SoCs and FPGAs is called AMD Vivado. It contains tools for place and route, design entry, synthesis, verification, and simulation.
AMD Vivado Design Suite
The 2024.2 version, which includes significant improvements for designing with AMD Versal adaptable SoCs, is now available.
AMD Vivado 2024.2 highlights
Improved Versal Adaptive SoC Design Flows for AMD.
Fast Place and Route for All Versal Devices
- Improved Advanced Flow for Quick Compilation.
- Routability and congestion optimization.
Enabling Top-Level RTL Flows
Makes it possible to use transceivers from the top-level RTL and Versal programmable network on chip (NoC).
Fast Boot of Processing System in Versal Devices
- Segmented setup for quick OS.
- Startup that satisfies a range of boot-sequence needs.
Facilitating quicker design iterations and achieving your FMAX goals more rapidly
The design program for AMD adaptive SoCs and FPGAs is called AMD Vivado. Design Entry, Synthesis, Place and Route, and Verification/Simulation tools are among its components.
Discover how sophisticated capabilities in the Vivado design tools enable designers to more precisely estimate power for AMD adaptive SoCs and FPGAs while cutting down on compilation times and design cycles.
Benefits
AMD Vivado Meeting Fmax Targets
One of the most difficult stages of the hardware design cycle is reaching your FMAX objective in a high-speed design. Vivado has special capabilities that assist you close timing, such Intelligent Design Runs (IDR), Report QoR Assessment (RQA), and Report QoR Suggestions (RQS). By using RQA, RQS, and IDR, you may reach your performance targets in a matter of days rather than weeks, which will increase your productivity significantly.
AMD Vivado Faster Design Iterations
As developers troubleshoot their ideas and add new features, design iterations are typical. These iterations are frequently minor adjustments made to a tiny section of the design. Incremental compile and Abstract Shell are two essential technologies in the AMD Vivado Design Suite that drastically cut down on design iteration times.
AMD Power Design Manager
Early and precise power prediction is essential for informing important design choices when creating FPGA and adaptive SoCs. For big and complicated devices like the Versal and UltraScale+ families, Power Design Manager is a next-generation power estimating tool designed to enable precise power estimation early in the design process. This tool was created especially to give precise power estimates for devices that have a lot of complicated hard IP blocks.
Design Flows
Design Entry & Implementation
Design entry in conventional HDL, such as VHDL and Verilog, is supported by AMD Vivado. Additionally, it supports the IP Integrator (IPI), a graphical user interface-based tool that enables a Plug-and-Play IP Integration Design Environment.
For today’s sophisticated FPGAs and SOCs, Vivado offers the finest synthesis and implementation available, with integrated timing closure and methodology capabilities.
Users may confine their design, assess findings, and close timing with the aid of the UltraFast methodology report (report_methodology), which is accessible in Vivado’s default flow.
Verification and Debug
To guarantee the final FPGA implementation’s functionality, performance, and dependability, verification and hardware debugging are essential. Effective validation of design functionality is made possible by the verification elements of the Vivado tool. Its extensive debugging capabilities enable engineers to quickly identify and fix problems in intricate designs.
Dynamic Function eXchange
With Dynamic Function eXchange (DFX), designers may make real-time changes to specific parts of their designs. The remaining logic can continue to function as designers download partial bitstreams to their AMD devices. This creates a plethora of opportunities for real-time performance improvements and design modifications. Designers may cut power consumption, upgrade systems in real-time, and switch to fewer or smaller devices via Dynamic Function eXchange.
AMD Vivado Platform Editions
AMD Vivado Design Suite- Standard & Enterprise Editions
AMD Vivado Design Suite Standard Edition is available for free download. The Enterprise Edition’s license options start at $2,995.
Features
Licensing Options
AMD Vivado Standard
You may download the AMD Vivado Standard Edition for free, giving you immediate access to its essential features and capabilities.
AMD Vivado Enterprise
All AMD devices are supported by the fully functional Vivado Enterprise Edition of the design suite.
Recommended System Memory
Each target device family’s average and maximum AMD Vivado Design Suite memory utilization. AMD advises allocating enough physical memory to handle periods of high consumption.
Remarks
- The more LUT and CLB are used, the more memory is used. The following figures were calculated with an average LUT usage of around 75%.
- The amount of memory used is strongly impacted by the magnitude and complexity of timing restrictions.
- The following figures were produced on a single synthesis and implementation run using the AMD Vivado tools in programmed batch mode.
- DFX flow may result in increased memory use.
- These devices are not compatible with 32-bit computers.
- Answer Record 14932 describes how to set up a Windows 32-bit computer to use 3 GB of RAM.
Operation System
The following operating systems are compatible with AMD’s x86 and x86-64 chip architectures.
Features
- Support for Microsoft Windows.
- 10.0 1809, 1903, 1909, and 2004 are Windows updates.
- Support for Linux.
- 7.4, 7.5, 7.6, 7.7, 7.8, and 7.9 for CentOS and RHEL 7.
- CentOS/RHEL 8: 8.1, 8.2, 8.3.
- LE SUSE: 12.4, 15.2.
- Among Ubuntu’s LTS versions are 16.04.5, 16.04.6, 18.04.1, 18.04.2, and 18.04.3, 18.04.4 LTS, 20.04 LTS, and 20.04.1 LTS.