The IBM Watsonx platform, which consists of Watsonx.ai, Watsonx.data, and Watsonx.governance, removes obstacles to the implementation of generative AI.
Complex data environments, a shortage of AI-skilled workers, and AI governance frameworks that consider all compliance requirements put businesses at risk as they explore generative AI’s potential.
Generative AI requires even more specific abilities, such as managing massive, diverse data sets and navigating ethical concerns due to its unpredictable results.
IBM is well-positioned to assist companies in addressing these issues because of its vast expertise using AI at scale. The IBM Watsonx AI and data platform provides solutions that increase the accessibility and actionability of AI while facilitating data access and delivering built-in governance, thereby addressing skills, data, and compliance challenges. With the combination, businesses may fully utilize AI to accomplish their goals.
Forrester Research’s The Forrester Wave: AI/ML Platforms, Q3, 2024, by Mike Gualtieri and Rowan Curran, published on August 29, 2024, is happy to inform that IBM has been rated as a strong performer.
IBM is said to provide a “one-stop AI platform that can run in any cloud” by the Forrester Report. Three key competencies enable IBM Watsonx to fulfill its goal of becoming a one-stop shop for AI platforms: Using Watsonx.ai, models, including foundation models, may be trained and used. To store, process, and manage AI data, use watsonx.data. To oversee and keep an eye on all AI activity, use watsonx.governance.
Watsonx.ai
Watsonx.ai: a pragmatic method for bridging the AI skills gap
The lack of qualified personnel is a significant obstacle to AI adoption, as indicated by IBM’s 2024 “Global AI Adoption Index,” where 33% of businesses cite this as their top concern. Developing and implementing AI models calls both certain technical expertise as well as the appropriate resources, which many firms find difficult to come by. By combining generative AI with conventional machine learning, IBM Watsonx.ai aims to solve these problems. It consists of runtimes, models, tools, and APIs that make developing and implementing AI systems easier and more scalable.
Let’s say a mid-sized retailer wants to use demand forecasting powered by artificial intelligence. Creating, training, and deploying machine learning (ML) models would often require putting together a team of data scientists, which is an expensive and time-consuming procedure. The reference customers questioned for The Forrester Wave AI/ML Platforms, Q3 2024 report said that even enterprises with low AI knowledge can quickly construct and refine models with watsonx.ai’s “easy-to-use tools for generative AI development and model training .”
For creating, honing, and optimizing both generative and conventional AI/ML models and applications, IBM Watsonx.ai offers a wealth of resources. To train a model for a specific purpose, AI developers can enhance the performance of pre-trained foundation models (FM) by fine-tuning parameters efficiently through the Tuning Studio. Prompt Lab, a UI-based tools environment offered by Watsonx.ai, makes use of prompt engineering strategies and conversational engagements with FMs.
Because of this, it’s simple for AI developers to test many models and learn which one fits the data the best or what needs more fine tuning. The watsonx.ai AutoAI tool, which uses automated machine learning (ML) training to evaluate a data set and apply algorithms, transformations, and parameter settings to produce the best prediction models, is another tool available to model makers.
It is their belief that the acknowledgement from Forrester further confirms IBM’s unique strategy for providing enterprise-grade foundation models, assisting customers in expediting the integration of generative AI into their operational processes while reducing the risks associated with foundation models.
The watsonx.ai AI studio considerably accelerates AI deployment to suit business demands with its collection of pre-trained, open-source, and bespoke foundation models from third parties, in addition to its own flagship Granite series. Watsonx.ai makes AI more approachable and indispensable to business operations by offering these potent tools that help companies close the skills gap in AI and expedite their AI initiatives.
Watsonx.data
Real-world methods for addressing data complexity using Watsonx.data
As per 25% of enterprises, data complexity continues to be a significant hindrance for businesses attempting to utilize artificial intelligence. It can be extremely daunting to deal with the daily amount of data generated, particularly when it is dispersed throughout several systems and formats. These problems are addressed by IBM Watsonx.Data, an open, hybrid, and controlled data store that is suitable for its intended use.
Its open data lakehouse architecture centralizes data preparation and access, enabling tasks related to artificial intelligence and analytics. Consider, for one, a multinational manufacturing corporation whose data is dispersed among several regional offices. Teams would have to put in weeks of work only to prepare this data manually in order to consolidate it for AI purposes.
By providing a uniform platform that makes data from multiple sources more accessible and controllable, Watsonx.data can help to simplify this. To make the process of consuming data easier, the Watsonx platform also has more than 60 data connections. The software automatically displays summary statistics and frequency when viewed data assets. This makes it easier to quickly understand the content of the datasets and frees up a business to concentrate on developing its predictive maintenance models, for example, rather than becoming bogged down in data manipulation.
Additionally, IBM has observed via a number of client engagement projects that organizations can reduce the cost of data processing by utilizing Watsonx.data‘s workload optimization, which increases the affordability of AI initiatives.
In the end, AI solutions are only as good as the underlying data. A comprehensive data flow or pipeline can be created by combining the broad capabilities of the Watsonx platform for data intake, transformation, and annotation. For example, the platform’s pipeline editor makes it possible to orchestrate operations from data intake to model training and deployment in an easy-to-use manner.
As a result, the data scientists who create the data applications and the ModelOps engineers who implement them in real-world settings work together more frequently. Watsonx can assist enterprises in managing their complex data environments and reducing data silos, while also gaining useful insights from their data projects and AI initiatives. Watsonx does this by providing comprehensive data management and preparation capabilities.
Watsonx.Governance
Using Watsonx.Governance to address ethical issues: fostering openness to establish trust
With ethical concerns ranking as a top obstacle for 23% of firms, these issues have become a significant hurdle as AI becomes more integrated into company operations. In industries like finance and healthcare, where AI decisions can have far-reaching effects, fundamental concerns like bias, model drift, and regulatory compliance are particularly important. With its systematic approach to transparent and accountable management of AI models, IBM Watsonx.governance aims to address these issues.
The organization can automate tasks like identifying bias and drift, doing what-if scenario studies, automatically capturing metadata at every step, and using real-time HAP/PII filters by using watsonx.governance to monitor and document its AI model landscape. This supports organizations’ long-term ethical performance.
By incorporating these specifications into legally binding policies, Watsonx.governance also assists companies in staying ahead of regulatory developments, including the upcoming EU AI Act. By doing this, risks are reduced and enterprise trust among stakeholders, including consumers and regulators, is strengthened. Organizations can facilitate the responsible use of AI and explainability across various AI platforms and contexts by offering tools that improve accountability and transparency. These tools may include creating and automating workflows to operationalize best practices AI governance.
Watsonx.governance also assists enterprises in directly addressing ethical issues, guaranteeing that their AI models are trustworthy and compliant at every phase of the AI lifecycle.
IBM’s dedication to preparing businesses for the future through seamless AI integration
IBM’s AI strategy is based on the real-world requirements of business operations. IBM offers a “one-stop AI platform” that helps companies grow their AI activities across hybrid cloud environments, as noted by Forrester in their research. IBM offers the tools necessary to successfully integrate AI into key business processes. Watsonx.ai empowers developers and model builders to support the creation of AI applications, while Watsonx.data streamlines data management. Watsonx.governance manages, monitors, and governs AI applications and models.
As generative AI develops, businesses require partners that are fully versed in both the technology and the difficulties it poses. IBM has demonstrated its commitment to open-source principles through its design, as evidenced by the release of a family of essential Granite Code, Time Series, Language, and GeoSpatial models under a permissive Apache 2.0 license on Hugging Face. This move allowed for widespread and unrestricted commercial use.
Watsonx is helping IBM create a future where AI improves routine business operations and results, not just helping people accept AI.