Sunday, September 15, 2024

Updates to Azure AI, Phi 3 Fine tuning, And gen AI models

- Advertisement -

Introducing new generative AI models, Phi 3 fine tuning, and other Azure AI enhancements to enable businesses to scale and personalise AI applications.

All sectors are being transformed by artificial intelligence, which also creates fresh growth and innovation opportunities. But developing and deploying artificial intelligence applications at scale requires a reliable and flexible platform capable of handling the complex and varied needs of modern companies and allowing them to construct solutions grounded on their organisational data. They are happy to share the following enhancements to enable developers to use the Azure AI toolchain to swiftly and more freely construct customised AI solutions:

- Advertisement -

Developers can rapidly and simply customise the Phi-3-mini and Phi-3-medium models for cloud and edge scenarios with serverless fine-tuning, eliminating the need to schedule computing.

Updates to Phi-3-mini allow developers to create with a more performant model without incurring additional costs. These updates include a considerable improvement in core quality, instruction-following, and organised output.

This month, OpenAI (GPT-4o small), Meta (Llama 3.1 405B), and Mistral (Large 2) shipped their newest models to Azure AI on the same day, giving clients more options and flexibility.

Value unlocking via customised and innovative models

Microsoft unveiled the Microsoft Phi-3 line of compact, open models in April. Compared to models of the same size and the next level up, Phi-3 models are their most powerful and economical small language models (SLMs). Phi 3 Fine tuning a tiny model is a wonderful alternative without losing efficiency, as developers attempt to customise AI systems to match unique business objectives and increase the quality of responses. Developers may now use their data to fine-tune Phi-3-mini and Phi-3-medium, enabling them to create AI experiences that are more affordable, safe, and relevant to their users.

- Advertisement -

Phi-3 models are well suited for fine-tuning to improve base model performance across a variety of scenarios, such as learning a new skill or task (e.g., tutoring) or improving consistency and quality of the response (e.g., tone or style of responses in chat/Q&A). This is because of their small compute footprint and compatibility with clouds and edges. Phi-3 is already being modified for new use cases.

Microsoft and Khan Academy are collaborating to enhance resources for educators and learners worldwide. As part of the partnership, Khan Academy is experimenting with Phi-3 to enhance math tutoring and leverages Azure OpenAI Service to power Khanmigo for Teachers, a pilot AI-powered teaching assistant for educators in 44 countries. A study from Khan Academy, which includes benchmarks from an improved version of Phi-3, shows how various AI models perform when assessing mathematical accuracy in tutoring scenarios.

According to preliminary data, Phi-3 fared better than the majority of other top generative AI models at identifying and fixing mathematical errors made by students.

Additionally, they have optimised Phi-3 for the gadget. To provide developers with a strong, reliable foundation for creating apps with safe, secure AI experiences, they launched Phi Silica in June. Built specifically for the NPUs in Copilot+ PCs, Phi Silica expands upon the Phi family of models. The state-of-the-art short language model (SLM) for the Neural Processing Unit (NPU) and shipping inbox is exclusive to Microsoft Windows.

Today, you may test Phi 3 fine tuning in Azure AI

Azure AI’s Models-as-a-Service (serverless endpoint) feature is now widely accessible. Additionally, developers can now rapidly and simply begin developing AI applications without having to worry about managing underlying infrastructure thanks to the availability of Phi-3-small via a serverless endpoint.

The multi-modal Phi-3 model, Phi-3-vision, was unveiled at Microsoft Build and may be accessed via the Azure AI model catalogue. It will also soon be accessible through a serverless endpoint. While Phi-3-vision (4.2B parameter) has also been optimised for chart and diagram interpretation and may be used to produce insights and answer queries, Phi-3-small (7B parameter) is offered in two context lengths, 128K and 8K.

The community’s response to Phi-3 is excellent. Last month, they launched an update for Phi-3-mini that significantly enhances the core quality and training after. After the model was retrained, support for structured output and instruction following significantly improved.They also added support for |system|> prompts, enhanced reasoning capability, and enhanced the quality of multi-turn conversations.

They also keep enhancing the safety of Phi-3. In order to increase the safety of the Phi-3 models, Microsoft used an iterative “break-fix” strategy that included vulnerability identification, red teaming, and several iterations of testing and improvement. This approach was recently highlighted in a research study. By using this strategy, harmful content was reduced by 75% and the models performed better on responsible AI benchmarks.

Increasing model selection; around 1600 models are already accessible in Azure AI
They’re dedicated to providing the widest range of open and frontier models together with cutting-edge tooling through Azure AI in order to assist clients in meeting their specific cost, latency, and design requirements. Since the debut of the Azure AI model catalogue last year, over 1,600 models from providers such as AI21, Cohere, Databricks, Hugging Face, Meta, Mistral, Microsoft Research, OpenAI, Snowflake, Stability AI, and others have been added, giving us the widest collection to date. This month, they added Mistral Large 2, Meta Llama 3.1 405B, and OpenAI’s GPT-4o small via Azure OpenAI Service.

Keeping up the good work, they are happy to announce that Cohere Rerank is now accessible on Azure. Using Azure to access Cohere’s enterprise-ready language models Businesses can easily, consistently, and securely integrate state-of-the-art semantic search technology into their applications because to AI’s strong infrastructure. With the help of this integration, users may provide better search results in production by utilising the scalability and flexibility of Azure in conjunction with the highly effective and performant language models from Cohere.

With Cohere Rerank, Atomicwork, a digital workplace experience platform and a seasoned Azure user, has greatly improved its IT service management platform. Atomicwork has enhanced search relevancy and accuracy by incorporating the model into Atom AI, their AI digital assistant, hence offering quicker, more accurate responses to intricate IT help enquiries. Enterprise-wide productivity has increased as a result of this integration, which has simplified IT processes.

- Advertisement -
Drakshi
Drakshi
Since June 2023, Drakshi has been writing articles of Artificial Intelligence for govindhtech. She was a postgraduate in business administration. She was an enthusiast of Artificial Intelligence.
RELATED ARTICLES

Recent Posts

Popular Post

Govindhtech.com Would you like to receive notifications on latest updates? No Yes